
N )0" 25530

EXPERIMENTAL INVESTIGATIONS OF LOW-ENERGY (4-40 eY)
COLLISIONS

OF O-(=P) IONS AND O(Sp) ATOMS WITH SURFACES

A. ChutJian,* O. J. Orient' and E. Murad +

'Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

+Air Force Geophysics Laboratory, Hanscom Air Force Base, MA 01731-5000

ABSTRACT

Using a newly-developed, magnetically confined source low-energy, ground state oxy-

gen negative ions and neutral atoms are generated. The energy range is variable, and atom

and neutrals have been generated at energies varying from 2 eV to 40 eV and higher. We

find that the interaction of these low-energy species with a solid magnesium fluoride target

leads to optical emissions in the (at least) visible and infrared regions of the spectrum. We

will discuss briefly details of the photodetachment source. We will then present spectra of

the neutral and ion Uglows" in the wavelength range 250-850 nm (for O-) and 600-850 nm

(for O), and discuss the variability of the emissions for incident energies between 4 and 40
eV.

l INTRODUCTION

The problem of vehicle Uglow" emission in low-earth orbit (LEO) has been documented

in some detail over the past several years. [See Ref.1 for a recent review of missions and

observations.] By way of summary, the optical emissions observed from the the Shuttle bay

window are from Shuttle surfaces oriented in the _ram" direction (along the Shuttle velocity

vector), and have been associated with interaction of 5 eV ground-state oxygen atoms with

the various surface materials. The emission spectrum in LEO has been measured, at the

3.4 nm resolution level, and found to be continuous in the range 450-800 nm, with a

broad maximum at about 680 nm. Higher resolution spectra in LEO, extending to shorter

wavelengths, are not available and would clearly be helpful in revealing any latent band

structure and in identifying the emitting species.

There is thus far no definite explanation for the glow process. However, various

scenarios have been suggested to account for the glow, with the most promising being

that of Swenson, ct a/ 12] in which the emission has been proposed to arise from the

NO2 recombination continuum. The excited NO t molecules are formed on the surface by
successive surface-mediated reactions of N and O by the so-called Langmuir-Hinshelwood

mechanism. Desorbed, excited NO t molecules emit in the A2BI _ X2A1 continuum. The

lifetime of the _. state (which determines the spatial extent of the glow above the Shuttle

skin), and the wavelengths of emission are both consistent with Shuttle observations.

Because of the difficulty in generating fast, ground-state atomic oxygen in the lab-

oratory, simulation followed by a clear understanding of the mechanism for the surface

glow has been a tedious process. Methods for generating oxygen atoms usually suffer

from one or more of the following properties: the atoms are too slow - less than 1 eV

in energy (plasma discharges); there is an unknown admixture of excited molecules and

atoms (positive-ion charge exchange, or hlgh-power laser sources that use either a solid

target or a dense gaseous target); or peak pulsed O-atom fluxes are so high (order of l02°

atoms/cmLsec for so-called "accelerated testing" by high-power pulsed laser sources) that

one _burns plastic _ rather than bathing the surface in an LEO-encountered flux of 1013-10 is

atoms/cm_-sec.
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We present in Sec. 2 a description of the JPL atomic oxygen source which generates

ground-state O-atoms of quantum state, energy, flux, and beam purity simulating that

encountered in LEO. It has been used to obtain first spectra of the glow phenomenon in

the laboratory. The IVigF2 surface chemiluminescence spectra using low-energy O- ions is

described in Sec. 3, and chemiluminescence spectra using low-energy O-atoms are given in
Sec. 4.

2 OXYGEN-ATOM SOURCE DESCRIPTION

The JPL atomic oxygen source was designed specifically to study the mechanism of the

spacecraft glow phenomenon, degradation of materials in LEO, and to carry out basic fast-

atom collision studies with neutral gaseous targets. Techniques used in the source involve

the following steps carried out in a uniform, high-intensity solenoidal magnetic field (see

Fig. I): (a) generate O-(_P) ions via dissociative attachment to NO at 8 eV electron energy

(point G); (b) accelerate the O- ions and electrons to the desired final energy (5 eV, say);

(c) by trochoidal deflection (T1) separate the higher-velocity electrons from the slower O-

ions, and trap the electrons in their Faraday cup; (d) detach the electron from O- by a cw
laser and a multiple-pass mirror (M) geometry; andre) direct the O- and O beams toward

the target, and reflect the undetached O- beam by biasing the target negative with respect

to the O- kinetic energy. Alternatively, a second trochoidal deflector, located immediately

after the mirrors M, was sometimes used to separate the ground-state O(SP) atoms from

undetached 0- ions, and trap the latter in a separate Faraday cup for analysis of the O-
be_[n.

The laser wavelengths are restrictedto visiblelines of an argon-ion laser so that

v,!F O murtlple mirror C

Figure 1. Schematic dlagram of the magne_caliy-confined, photodetachment o'atom source.

detachment results exclusively in ground-state atoms [3]. For a 20 watt laser, 5 eV ions,

and 100 passes across the confined ion beam, one obtains about a 15% detachment efficiency

into O(sP). Furthermore, if wavelengths shorter than about 360 nm are used, one may also

generate a mixture of O(1D) and O(sp) atoms. This capability is useful in studying

differential reaction effects of electronically-excited atoms, such as O-atom addition to
double-bonds in epoxies and organic molecules.
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In orderto minimize rapid divergence of the O-atom beam after detachment, care

was taken in the source to restrict the energy of the O- ions perpendicular to the B field.

This involves choosing the target gas (at G) to provide small O- kinetic energy at onset,
and giving due regard to the space-charge repulsion between the ions, especially at hlgh

O- currents.

For both the O- and O-atom studies,the same sample of MgFi was used as the target.

A 95°A transmitting tungsten gauze covered the surface to prevent surface charging by the

O- beam; and alsoto allow repulsionof the O- beam during the O-atom measurements.

A large,high-reflectivitymirror at C (Fig. l)was used to collecta broad spatialextent of

optical emissions from the target. These emissions were focused onto the entrance plane of

a fastf/3.5 double-grating monochromator capable (forthe O-atom case) of attenuating by

a factor 10_ laserlinesat 500 nrn from spectral emissions at 600 nm. The detection system

used an RCA phototube with a gallium arsenide photocathode and a manufacturer's stated

long-wavelength cutoffof 900 nm. Fast,pulse-counting electronicswere used, and spectra

accumulated by multichannel scaling.

3 THE NZGATrVE ZON [O-pP)] GLOW

We show in Fig. 2 spectra of the O-(2P) glow from a MgFz surface in the wavelength

range 250-850 nm, and at four O- energies ranging from 5-40 eV. The currents were in

the range [.0-5.0/_a, or fluxesof (0.32 -1.6) x i014ions/cmZ-secl The spectra in Fig. 2

were normalized to a common flux of ].0 x 1014. Care was taken in these measurements

to prevent surface charging of the dielectrictarget by use of a transparent, conducting

tungsten gauze on the target surface. This gauze itselfwas shown not to contribute to
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Figure 2. Glow signal of negative oxygen ions O-(IP) from a MgFi surface, at the indicated

O- collisionenergies.
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the observed spectra. Also, a glow contribution arising from interaction of the O- beam

with the background gas (mainly NO) was observed. This contribution to the spectrum

was measured by taking spectra with the tungsten gauze biased negatively, so that the O-

beam was reflected just above the MgFz target.

One sees in Fig. 2 that the O- glow from MgF2 is characterized by two broad, un-

structured (at the 10 nm resolution level of the present measurements) spectral emissions:

one peaked near 375 nm, and the second at 600-650 nm. The spectral intensity is a strong

function of O- energy, with emission being strongest at 40 eV, and diminishing rapidly
at energies near 5 eV. No attempts have been made to indentify the origin of these fea-

tures pending experiments to be carried out under more controlled vacuum and surface

conditions (see Se¢. 4).

It isinterestingto note that at high fluxes(order of 1014),the O- glow Iseasilyvisible

to the eye,having a bluish appearance (not resembling, that is,the orangish Shuttle glow!).

4 THE ATOMIC OXYGEN [O(SP)] GLOW

Shown inFig. 3 are spectra in the wavelength range 600-8S0 nm arisingfrom the interaction

of 4, 5 and 40 eV O(SP) oxygen atoms with the same MgF_ surface. Comparison of these
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Figure 3. Glow signal of ground stateatomic oxygen atoms O(SP) from a MgF2 surface,at the

indicated O-atom collisionenergies.
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spectra are made with glow results from the STS 41-D mission [2], and from laboratory-

measured NO -{- O recombination spectra at thermal oxygen-atom energies [4,5].

The spectra in Fig. 3 were approximately two-to-three orders of magnitude weaker

than the O- glow spectra of Fig. 2. Reasons for this are (a) the efficiency of the pho-

todetachment step is only about i0%, (b) the O-beam, no longer confined by the magnetic

field, diverges as it travels toward the target from a combination of imparted kinetic energy

in the dissociative attachment step, and effects of space-charge repulsion in the 0- beam,

and (c) the conversion efficiency of O-atoms to visible photons is estimated to be quite

low, about 2.5 × 10 -6 [6l.

As a result, a number of other background sources had to be identified and eIimlnated

from these spectra. The major contributors were : (a) a persistent fluorescence signal

BL arising from the detachment mirrors with the laser on, (b) photons Bo- arising from

interaction of the O- beam with the background gas, and (c) photons B_ from the electron-

gun filament. The net glow signal G was obtained over four cycles of signal-gathering.

These were (l) photon counts with laser on and O- beam on, (2) counts with laser on and

O- off, (3) counts with laser off and O- on, and (4) counts with laser off and O- off. The

net glow signal G was then given by (1) - (2) - (3) ÷ (4). The error limits shown in Fig. 3

reflect the sum of the four statistical errors in the individual counting cycles.

Also considered in this sequence was the fact that the background Bo- in steps (l) and

(3) are not the same, due to depletion of O- by detachment. We found that this depletion

had to be about a factor of 2.5 greater than could be accounted for solely by detachment.

The reason for this is not clear. It could lie either in the measured value [3] of the detach-

ment cross section being a factor of 2.5 too low; or that the detachment cross section of

O- is enhanced (by the same factor) via Landau resonances of the detached electron in the

solenoidal magnetic field. Calculations based on works of Crawford [71 and observations

by Krause [8] show that these resonances do persist up to 1 eV above detachment thresh-

old. Enhancement is thus possible in our case, given the homogeneity of magnetic field

(estimated to be better than 0.5% in the detachment region), laser bandwidth (8 GHz),

and spacing of the resonances (169 GHz, neglecting overlapping fine-structure transitions

and Zeeman splittings).

One striking feature in Fig. 3 is that the glow is continuous (10 nm resolution level)

and shows two prominent maxima, one at 650 nm and the second at 800-825 nm. The first

maximum is in good agreement with the STS 41-D data and laboratory recombination

spectra. No evidence is seen for a second maximum in these last data. However, the NO2

recombination continuum may take on a different shape, depending on the recombining

species and the available internal energy; and on the type of Shuttle surface material and

its temperature. It is interesting to note recent laboratory glow results wherein a single

maximum at 820 nm in glow signal was seen in an O (0.16 eV energy} + NO ÷ Ni surface

experiment [9].

The second striking feature is that the glow signal falls below our present detection

limit at an energy of 4 eV, and this represents an upper energy bound to the true threshold.

To obtain an estimate of the threshold, we use the following pieces of information: Ca) the O

÷ NO (surface) system gains 3.1 eV by the ON-O bond formation, (b) one requires about

0.5 eV to dislodge the electronically-excited NO_ from the surface, (c) the NO_ leaves

the surface with about !.3 eV kinetic energy, and (d) the maximum internal electronic

excitation energy of NO_ corresponds to the 400 nm (3.1 eV) onset of the LEO-observed

glow. Thus, the center-of-mass threshold energy T_,_ is given by T_,, ÷ (a) = (b) ÷ (c) +

(d), or T,,_ = 1.8 eV, and T_b ---- 1.8 x (16/10.4) ----2.8 eV (neglecting the small thermal

energy of the surface-bonded NO). This is consistent with our upper limit of 4 eV.

267



As in the O- case, no identification of the emission continua is possible without un-

derstanding the mechanism of the glow process. To this end, work is currently underway to

carry out the glow measurements under ultrahigh vacuum conditions, by playing different

gases over the solid target surface and identifying which gases, if any, enhance the glow.

Work is also planned to explore the spectral region below 600 nm. While some of this

region is obscured by the detaching argon-ion laser lines, wavelengths below 450 nm are

accessible.
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